9530
2021年4月10日-12日,吴文俊人工智能科学技术奖十周年颁奖盛典暨2020中国人工智能产业年会在北京和苏州同期圆满成功举办。王晟受邀在苏州工业园区希尔顿酒店,2020中国人工智能产业年会—疫情时代生物医药前沿论坛上发表主题报告《一种高精度蛋白结构从头折叠方法 tFold》。
以下为演讲实录:
-----------------------------------------------------------------------------------------------------------------
【参考文献】:
Han, Y., Zhuang, Q., Sun, B., Lv, W., Wang, S., Xiao, Q., Pang, B., Zhou, Y., Wang, F., Chi, P. and Wang, Q., 2021. Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism. Nature Communications, 12(1), pp.1-10.
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. and Moult, J., 2019. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins: Structure, Function, and Bioinformatics, 87(12), pp.1011-1020.
Zemla, A., 2003. LGA: a method for finding 3D similarities in protein structures. Nucleic acids research, 31(13), pp.3370-3374.
Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W., Bridgland, A. and Penedones, H., 2020. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), pp.706-710.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, et al. High accuracy protein structure prediction using deep learning. Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book) 2020;p. 22 –24.
Simons, K.T., Kooperberg, C., Huang, E. and Baker, D., 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of molecular biology, 268(1), pp.209-225.
Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J., 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS computational biology, 13(1), p.e1005324.
Kim, D.E., DiMaio, F., Yu‐Ruei Wang, R., Song, Y. and Baker, D., 2014. One contact for every twelve residues allows robust and accurate topology‐level protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 82, pp.208-218.
Wang, S., Peng, J., Ma, J. and Xu, J., 2016. Protein secondary structure prediction using deep convolutional neural fields. Scientific reports, 6(1), pp.1-11.
He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Xu, J. and Zhang, Y., 2010. How significant is a protein structure similarity with TM-score= 0.5?. Bioinformatics, 26(7), pp.889-895.
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S. and Read, R.J., 1998. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallographica Section D: Biological Crystallography, 54(5), pp.905-921.
Wang, S., Sun, S. and Xu, J., 2018. Analysis of deep learning methods for blind protein contact prediction in CASP12. Proteins: Structure, Function, and Bioinformatics, 86, pp.67-77.
Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S. and Baker, D., 2020. Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences, 117(3), pp.1496-1503.
Haas, J., Barbato, A., Behringer, D., Studer, G., Roth, S., Bertoni, M., Mostaguir, K., Gumienny, R. and Schwede, T., 2018. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins: Structure, Function, and Bioinformatics, 86, pp.387-398.
Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J.F., Abbeel, P., Sercu, T. and Rives, A., 2021. Msa transformer. bioRxiv.
Wu, J., Luo, S., Shen, T., Lan, H., Wang, S. and Huang, J., 2021. EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based Models. arXiv preprint arXiv:2105.04771.